Synchrotron-Based in Situ Characterization of the Scaffold Mass Loss from Erosion Degradation

نویسندگان

  • Nahshon K. Bawolin
  • Xiongbaio Chen
چکیده

The mass loss behavior of degradable tissue scaffolds is critical to their lifespan and other degradation-related properties including mechanical strength and mass transport characteristics. This paper presents a novel method based on synchrotron imaging to characterize the scaffold mass loss from erosion degradation in situ, or without the need of extracting scaffolds once implanted. Specifically, the surface-eroding degradation of scaffolds in a degrading medium was monitored in situ by synchrotron-based imaging; and the time-dependent geometry of scaffolds captured by images was then employed to estimate their mass loss with time, based on the mathematical model that was adopted from the literature of surface erosion with the experimentally-identified model parameters. Acceptable agreement between experimental results and model predictions was observed for scaffolds in a cylindrical shape, made from poly(lactic-co-glycolic) acid (PLGA) and polycaprolactone (PCL). This study illustrates that geometry evaluation by synchrotron-based imaging is an effective means to in situ characterize the scaffold mass loss as well as possibly other degradation-related properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of soil volume loss due to gully erosion and estimation of its economic cost (Case study: Ghazeian watershed, Fars province)

Gully erosion is known as one of the most important and destructive forms of land degradation, and the loss of soil throughout the world. As estimation of soil volume loss and understanding the economic costs of soil erosion are of great importance; this study has been carried out to calculate the amount of soil volume loss due to gully erosion and estimate its economic cost in Ghazeian watersh...

متن کامل

Preparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles

Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...

متن کامل

Non-invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy.

Degradation is among the most important properties of biomaterial scaffolds, which are indispensable for regenerative medicine. The currently used method relies on the measurement of mass loss across different samples and cannot track the degradation of an individual scaffold in situ. Here we report, for the first time, the use of multiscale photoacoustic microscopy to non-invasively monitor th...

متن کامل

بررسی تاثیر تغییرات پوشش و کاربری زمین در قابلیت فرسایش خاک – مطالعه موردی حوضه قره‌سو گرگانرود

Investigation about the influence of land-cover and land use changes on soil erodibility potential, case study: Gharesou, Gorganrood Land use and land cover (LUC) change associated with climatic and geomorphologic conditions of the area have an accelerating impact on the land degradation. Natural as well as human-induced land use land cover change (LUCC) has significant impacts on regional soi...

متن کامل

Preparation and Characterization of a Novel Biodegradable Epoxy Resin Modified with Epoxidized Oleic Acid

The goal of this research was to study the curing behavior and biodegradability DER 736 modified with epoxidized oleic acid. In this paper we demonstrate the efficient epoxidation of oleic acid with performic acid generated in situ from formic acid and hydrogen peroxide in the presence of H2SO4 as catalyst. The highest relative epoxy yield of 61% was achieved at 40 ͦC after 10 h. DER 736 modifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016